C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name: Numerical Methods

Subject Code: 4SC04M	ITE1/4SC04NUM1	Branch: B.Sc. (Mathematics, Physics)		
Semester:4	Date:03/05/2018	Time:10:30 To 01:30	Marks: 70	

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

	Atten	npt the following questions:		
a)	Initial	approximation of $x^3 - x - 2 =$	= 0 can t	be chosen from
	(1)	[0, 1]	(2)	(-1,0)
	(3)	(1,2)	(4)	[1,2]
b)	For Si	mpson's $\frac{1}{3}^{rd}$ rule, n is required m	nultiple o	
	(1)	2	(2)	3
	(3)	4	(4)	5
c)	To de	rive Trapezoidal rule	for	mula is used.
	(1)	Newton's Backward	(2)	Gauss Forward
	(3)	Newton's Forward	(4)	Gauss Backward
d)	Whicl	n of the following method can b	e used to	evaluate a numerical integral
	(1)	Picard's Method	(2)	Runge –Kutta Method
	(3)	Euler's Method	(4)	None of these
e)	The o	rder of convergence in Newton'	sRaphso	n method is
	(1)	2	(2)	3
	(3)	0	(4)	None of these
f)	Matc	h the following:		
,	Α	Newton-Raphson	1	Integration
	В	Runge-kutta	2	Root finding
	С	Simpson's Rule	3	Ordinary Differential Equations
		·		
		(1) A2 - B3 - C1		(2) A1 - B3 - C2
		(3) $A2 - B1 - C3$	(4)	None of these
g)	Newto	on's iterative formula to find the	e value o	$f\sqrt{N}$ is
		$(1) x_{n+1} = \left(x_n + \frac{N}{x_n}\right)$		(2) $x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right)$
		(3) $x_{n+1} = \frac{1}{3} \left(2x_n + \frac{N}{x_n^2} \right)$		(4) $x_{n+1} = \frac{1}{2} \left(x_n - \frac{N}{x_n} \right)$
h)	Write	Runge-Kutta second order meth	nod.	

h) Write Runge-Kutta second order method.

If f(x) is given by **i**)

x	0	0.5	1
f(x)	1	0.8	0.5

Then using Trapezoidal rule, find $\int_0^1 f(x) dx$.

- The number of strips required in Weddle's rule is j) (01)
- Find an interval containing an initial approximation $x^2 10x + 7 = 0$. k) (01)
- Write formula of Euler's modified method. I)
- m) Newton-Raphson method is applicable to the solution of both algebraic and (01)transcendental equations. Determine whether the statement is True or False.
- Predictor-corrector methods is a self-starting method. Determine whether the (01)n) statement is True or False.

Attempt any four questions from Q-2 to Q-8

Attempt all questions Q-2

- Calculate the value of $\int_0^1 \frac{x}{1+x} dx$ correct up to three significant figures, taking six (07)a) intervals by using (*i*) Trapezoidal rule, (*ii*) Simpson's $\frac{1}{3}^{rd}$ rule.
- The function f(x) is tabulated below, for different values of x b)

The function $f(x)$ is tabulated below, for different values of x					(07)	
x	0	5	10	15	20	
f(x)	1.5708	1.5738	1.5828	1.5981	1.6200	
Compute first and second derivatives of $f(x)$ at $x = 0$ and $x = 20$.						

Q-3

Q-4

Q-5

- a) Derive differentiation formulae based on Newton's forward interpolation formula. (07)
- State and prove Euler-Maclaurin Sum Formula. **b**)

Attempt all questions

Attempt all questions

- Find a positive root of $x + \ln x 2 = 0$ by Newton-Raphson method correct to (05)a) two significant figure.
- Compute y(2), if y(x) satisfies the equation $\frac{dy}{dx} = \frac{1}{2}(x + y)$ given y(0) = 2, (05)b) y(0.5) = 2.636, y(1.0) = 3.595 and y(1.5) = 4.968, using Milne's method.
- c) Find a root of the equation $x^{x} + 2x 6 = 0$, by method of bisection, correct to two (04)decimal places.

Attempt all questions

- Let $x = \xi$ be a root of f(x) = 0 and let *I* be an interval containing the point $x = \xi$. (05)a) Let $\phi(x)$ and $\phi'(x)$ be continuous in I where $\phi(x)$ is defined by the equation $x = \phi(x)$ which is equivalent to f(x) = 0. Then prove that if $|\phi'(x)| < 1$ for all xin *I*, the sequence of approximations $x_0, x_1, x_2, ..., x_n$ defined by $x_n = \phi(x_{n-1})$ converges to the ξ , provided that the initial approximation x_0 is chosen in *I*.
- **b**) Use Taylor's series method to compute y(1.1), correct to five decimal places, (05)when y(x) satisfies the equation $\frac{dy}{dx} = xy$ with y(1.0) = 2.

Find y(0.10) and y(0.15) by Euler's method, from the differential equation $\frac{dy}{dx} = x^2 + y^2$ (04)**c**) , y(0) = 0 correct up to four decimal places, taking step length h = 0.5. **Attempt all questions** (14)

- Q-6
- Using Regula-Falsi method, find a root of $x \sin x = 1$ correct to three decimal (05)a) places.
- b) Derive differentiation formula based on Newton's divided difference formula. (05)

(01)

(01)

(14)

(14)

(07)

(14)

(14)

c)	Evaluate: $\int_0^1 \frac{dx}{1+x^2}$ by using Weddle's rule with $h = \frac{1}{6}$.	(04)
	Attempt all questions	(14)

Q-7

Q-8

- a) Evaluate $\int_{0.1}^{0.7} (e^x + 2x) dx$, by Simpson's $\frac{3^{th}}{8}$ rule, taking h = 0.1, correct up to five (05)decimal places.
- b) Compute y(0.2), by Runge-Kutta fouth order method correct up to four decimal (05) places, from the equation $\frac{dy}{dx} = x + y$, y(0) = 1, taking h = 0.2.

c) Describe Picard's Method for first order ordinary differential equation. (04)
Attempt all questions (14)
a) Obtain Picard's second approximate solution of the initial value problem (05)

$$\frac{dy}{dt} = \frac{x^2}{2}, y(0) = 0.$$

$$\frac{dy}{dx} = \frac{x^2}{y^2 + 1}, y(0) =$$

- Find the root of $x^2 + \ln x 2 = 0$, which lies between 1 and 2 by iteration method b) (05)correct up to four decimal places.
- Apply Euler-Maclaurin sum formula to find the sum $1^3 + 2^3 + 3^3 + \dots + n^3$. (04)**c**)

